開關電源應用之數字化光伏發電逆變器的設計
1 導言
太陽能光伏發電是一種將太陽光輻射能直接變換為電能的新式發電技能。太陽光輻射能經過光伏電池變換為電能,再經能量貯存、操控與維護、能量變換等環節,使之可按人們的需求向負載提供直流電能或溝通電能。光伏電池陣列所宣布的電能為直流電,可是大多數用電設備選用的是溝通供電辦法,所以體系中需求有逆變器將直流電變換為溝通電以供負載運用。顯著,逆變器的功率將直接影響到整個體系的功率,因而,光伏體系逆變器的操控技能具有重要的研討含義[1]。
在逆變器的規劃中,通常選用模仿操控辦法,但是,模仿操控體系中存在很多缺點,如元器材的老化及溫漂效應,對電磁攪擾較為靈敏,運用的元器材數目較多等等。典型的模仿PWM逆變器操控體系選用天然采樣法將正弦調制波與三角載波對比,然后操控觸發脈沖,但三角波發作電路在高頻(20kHz)時簡單被溫度、器材特性等要素攪擾,然后致使輸出電壓中呈現直流偏移,諧波含量增加,死區時刻改變等不利影響。高速數字信號處理器(DSP)的開展使光伏發電體系中逆變器的數字化操控成為可能。因其大多數指令可在一個指令周期內完結,因而能夠完成較為雜亂的領先操控算法,進一步改進輸出波形的動態功能、穩態功能,而且能夠簡化整個體系的規劃,使體系具有杰出的一致性。
這篇文章對根據DSP的光伏逆變器數字操控體系進行了剖析,選用重復操控和數字PID操控計劃進行體系操控,使體系具有較好的穩態特性和動態呼應才能。
2 體系布局與操控電路剖析
太陽能光伏發電體系的典型布局如圖1所示。實踐使用體系中的光伏發電體系因使用目標不一樣而省掉或多出某個部分,但均是從這個典型布局中演化而來。
圖1 太陽能光伏發電體系的典型布局
在中小型獨立光伏發電體系中,常選用圖2所示布局,即選用逆變器直接將光伏電池陣列的直流輸出電壓變換為溝通電壓。在本體系中,因光伏電池陣列輸出電壓因為光照強度的改變,而會呈現較大范圍的動搖,所以需求逆變器能夠在較大的直流電壓改變范圍內正常作業,而且要確保輸出電壓的安穩,因而對逆變器的操控需求也很高。
圖2 獨立光伏體系布局
操控電路布局如圖3所示。在操控電路中,選用輸出電壓瞬時值反應,進行波形操控,整個體系作業流程規劃如下:
圖3 DSP操控電路布局
選用電壓霍爾對輸出電壓進行采樣,采樣周期為20kHz。電壓霍爾輸出信號經調度電路送入DSP模/數變換單元,并將變換成果暫存于DSP中,由此得到輸出電壓的反應信息。將采樣得到的反應信息與給定正弦表的相應數據進行對比,得到差錯信號。將差錯信號及給定信號按必定的操控算法進行核算,就得到脈寬操控量。在本體系中,操控算法選用的是重復操控加PID操控的辦法,前者確保輸出波形的穩態功能,后者確保輸出波形的動態功能。
由該操控量能夠核算出當時時刻SPWM波的占空比,使得輸出波形的占空比按正弦規則改變,這樣就得到了高頻SPWM波。思考到全橋逆變的上下橋臂不能直通,還有必要在DSP的PWM口輸出中參加相應的死區。死區的參加極為便利,只需軟件編程時,對DSP內部的死區寄存器進行設置,其就會主動在已有的PWM波中參加死區,而且死區時刻是能夠經過對寄存器設置不一樣的值來調整的。高頻SPWM波再通往驅動電路。由驅動電路發生的驅動脈沖操控功率開關管的通斷,然后發生按正弦規則改變的SPWM波,然后再經LC濾波,去掉高頻重量然后得到正弦波輸出電壓。
3 操控算法與完成
重復操控的基本概念來源于操控理論中的內模原理,內模原理指出:體系安穩狀態下無靜差盯梢輸入信號的條件是閉環體系安穩且包括輸入信號堅持器,例如,包括一階積分環節的操控體系能夠完成對階躍指令的無靜差盯梢,但是,積分環節1/s正是一個階躍信號堅持器,這是它能完成對階躍指令無靜差盯梢的根本原因[2][3]。
在規劃一個重復操控器的過程中,有必要要有一個周期信號堅持器用來消除周期參閱信號或許擾動引起的周期盯梢差錯。這個周期信號既能夠用模仿辦法發生,也能夠由數字辦法發生。但是在實踐體系中,用模仿辦法發生任意波形是十分艱難的,相反,經過軟件操控辦法能夠很簡單得到一個周期信號。圖4示出了一種重復操控體系。其間,P(z)表明具有瞬時盯梢閉環反應操控的光伏逆變器體系,S(z)和Q(z)是重復操控器的抵償環節,r(k)是參閱信號,y(k)是體系輸出電壓,e(k)是盯梢差錯,rc(k)是重復操控器抵償后的參閱指令。
圖4 逆變器重復操控框圖
擾動輸入d(k)到盯梢差錯e(k)的傳函可表明為
H(z)== (1)
式中:N表明一個基波周期的采樣次數。
對應s域中的頻率呼應為
H(jω)=H(z) (2)
式中:T代表采樣周期。
假如d(k)的頻率是基波周期的整數倍,并假定Q(z)=1且PB(z)安穩,有
|H(jω)|=0 (3)
這表明重復操控器消除了頻率為基波周期整數倍攪擾發生的盯梢差錯,然后得到了十分好的盯梢作用。
當然,為了確保體系安穩,通常取Q(z)<1,這樣就有
|H(jω)|<μ(jω) (4)
式中:μ(jω)為一很小的數。
別的,從直觀上講,重復操控器能夠看作N個積分調理器,對應于參閱信號的N個采樣點。然后,一個瞬時值盯梢體系分解為N個恒值調理體系,經過各采樣點的無靜差盯梢,確保了整個正弦參閱信號的盯梢精度。
重復操控盡管能夠確保輸出波形,但它卻有一個喪命的缺點。由圖3能夠看出,重復操控得到的操控指令并不是立即輸出給體系,而是滯后一個參閱周期后才輸出。這樣,假如體系內部呈現攪擾,消除攪擾對輸出的影響至少要一個參閱周期。攪擾呈現后的一個參閱周期內,體系對攪擾并不發生任何調理作用,這一個周期體系近乎處于開環操控狀態。因而,重復操控體系的動態呼應速度是十分慢的。
因為上述原因,關于高需求的光伏體系逆變器不宜獨自選用重復操控[4][5]。選用數字PID操控盡管輸出電壓波形質量不是很高,但它卻是以開關周期對盯梢差錯進行調理。細心規劃體系參數,能夠使體系取得杰出的動態特性。綜合思考,將兩種操控辦法聯系在一起,揚長避短,使用重復操控改進體系的穩態輸出波形質量,使用數字PID操控或極點裝備提高體系的動態特性,使體系兼具杰出的穩態和動態特性。
4 試驗成果
針對以上的剖析,在一15kW光伏體系單相全橋逆變器進步行了試驗,參數如下:開關器材選用IGBT模塊,濾波電感Lf=0.68mH,濾波電容Cf=50μF,數字信號處理器選用TI公司的TMS320F240DSP,并選用240DSP自帶雙10位A/D變換器。試驗成果如圖5所示。
(a) 閉環空載波形
(b) 閉環加載波形(R=5Ω)
圖5 試驗波形
從圖5中能夠看出,選用離散重復操控能夠確保光伏逆變器在空載條件下堅持安穩,在帶載條件下能夠顯著改進體系的穩態功能,顯著降低體系的穩態差錯。
5 結語
這篇文章剖析了光伏發電體系逆變器數字化完成的含義,并對整個體系及其操控電路進行了剖析,在操控算法上,選用離散重復操控戰略,使體系在周期性擾動信號下的穩態功能得以改進。因為數字化操控的優越性對比顯著,因而在偏遠地區及其它使用場合,數字化光伏發電體系逆變器的使用將會越來越廣泛。
以上由開關電源公司提供!
太陽能光伏發電是一種將太陽光輻射能直接變換為電能的新式發電技能。太陽光輻射能經過光伏電池變換為電能,再經能量貯存、操控與維護、能量變換等環節,使之可按人們的需求向負載提供直流電能或溝通電能。光伏電池陣列所宣布的電能為直流電,可是大多數用電設備選用的是溝通供電辦法,所以體系中需求有逆變器將直流電變換為溝通電以供負載運用。顯著,逆變器的功率將直接影響到整個體系的功率,因而,光伏體系逆變器的操控技能具有重要的研討含義[1]。
在逆變器的規劃中,通常選用模仿操控辦法,但是,模仿操控體系中存在很多缺點,如元器材的老化及溫漂效應,對電磁攪擾較為靈敏,運用的元器材數目較多等等。典型的模仿PWM逆變器操控體系選用天然采樣法將正弦調制波與三角載波對比,然后操控觸發脈沖,但三角波發作電路在高頻(20kHz)時簡單被溫度、器材特性等要素攪擾,然后致使輸出電壓中呈現直流偏移,諧波含量增加,死區時刻改變等不利影響。高速數字信號處理器(DSP)的開展使光伏發電體系中逆變器的數字化操控成為可能。因其大多數指令可在一個指令周期內完結,因而能夠完成較為雜亂的領先操控算法,進一步改進輸出波形的動態功能、穩態功能,而且能夠簡化整個體系的規劃,使體系具有杰出的一致性。
這篇文章對根據DSP的光伏逆變器數字操控體系進行了剖析,選用重復操控和數字PID操控計劃進行體系操控,使體系具有較好的穩態特性和動態呼應才能。
2 體系布局與操控電路剖析
太陽能光伏發電體系的典型布局如圖1所示。實踐使用體系中的光伏發電體系因使用目標不一樣而省掉或多出某個部分,但均是從這個典型布局中演化而來。
圖1 太陽能光伏發電體系的典型布局
在中小型獨立光伏發電體系中,常選用圖2所示布局,即選用逆變器直接將光伏電池陣列的直流輸出電壓變換為溝通電壓。在本體系中,因光伏電池陣列輸出電壓因為光照強度的改變,而會呈現較大范圍的動搖,所以需求逆變器能夠在較大的直流電壓改變范圍內正常作業,而且要確保輸出電壓的安穩,因而對逆變器的操控需求也很高。
圖2 獨立光伏體系布局
操控電路布局如圖3所示。在操控電路中,選用輸出電壓瞬時值反應,進行波形操控,整個體系作業流程規劃如下:
圖3 DSP操控電路布局
選用電壓霍爾對輸出電壓進行采樣,采樣周期為20kHz。電壓霍爾輸出信號經調度電路送入DSP模/數變換單元,并將變換成果暫存于DSP中,由此得到輸出電壓的反應信息。將采樣得到的反應信息與給定正弦表的相應數據進行對比,得到差錯信號。將差錯信號及給定信號按必定的操控算法進行核算,就得到脈寬操控量。在本體系中,操控算法選用的是重復操控加PID操控的辦法,前者確保輸出波形的穩態功能,后者確保輸出波形的動態功能。
由該操控量能夠核算出當時時刻SPWM波的占空比,使得輸出波形的占空比按正弦規則改變,這樣就得到了高頻SPWM波。思考到全橋逆變的上下橋臂不能直通,還有必要在DSP的PWM口輸出中參加相應的死區。死區的參加極為便利,只需軟件編程時,對DSP內部的死區寄存器進行設置,其就會主動在已有的PWM波中參加死區,而且死區時刻是能夠經過對寄存器設置不一樣的值來調整的。高頻SPWM波再通往驅動電路。由驅動電路發生的驅動脈沖操控功率開關管的通斷,然后發生按正弦規則改變的SPWM波,然后再經LC濾波,去掉高頻重量然后得到正弦波輸出電壓。
3 操控算法與完成
重復操控的基本概念來源于操控理論中的內模原理,內模原理指出:體系安穩狀態下無靜差盯梢輸入信號的條件是閉環體系安穩且包括輸入信號堅持器,例如,包括一階積分環節的操控體系能夠完成對階躍指令的無靜差盯梢,但是,積分環節1/s正是一個階躍信號堅持器,這是它能完成對階躍指令無靜差盯梢的根本原因[2][3]。
在規劃一個重復操控器的過程中,有必要要有一個周期信號堅持器用來消除周期參閱信號或許擾動引起的周期盯梢差錯。這個周期信號既能夠用模仿辦法發生,也能夠由數字辦法發生。但是在實踐體系中,用模仿辦法發生任意波形是十分艱難的,相反,經過軟件操控辦法能夠很簡單得到一個周期信號。圖4示出了一種重復操控體系。其間,P(z)表明具有瞬時盯梢閉環反應操控的光伏逆變器體系,S(z)和Q(z)是重復操控器的抵償環節,r(k)是參閱信號,y(k)是體系輸出電壓,e(k)是盯梢差錯,rc(k)是重復操控器抵償后的參閱指令。
圖4 逆變器重復操控框圖
擾動輸入d(k)到盯梢差錯e(k)的傳函可表明為
H(z)== (1)
式中:N表明一個基波周期的采樣次數。
對應s域中的頻率呼應為
H(jω)=H(z) (2)
式中:T代表采樣周期。
假如d(k)的頻率是基波周期的整數倍,并假定Q(z)=1且PB(z)安穩,有
|H(jω)|=0 (3)
這表明重復操控器消除了頻率為基波周期整數倍攪擾發生的盯梢差錯,然后得到了十分好的盯梢作用。
當然,為了確保體系安穩,通常取Q(z)<1,這樣就有
|H(jω)|<μ(jω) (4)
式中:μ(jω)為一很小的數。
別的,從直觀上講,重復操控器能夠看作N個積分調理器,對應于參閱信號的N個采樣點。然后,一個瞬時值盯梢體系分解為N個恒值調理體系,經過各采樣點的無靜差盯梢,確保了整個正弦參閱信號的盯梢精度。
重復操控盡管能夠確保輸出波形,但它卻有一個喪命的缺點。由圖3能夠看出,重復操控得到的操控指令并不是立即輸出給體系,而是滯后一個參閱周期后才輸出。這樣,假如體系內部呈現攪擾,消除攪擾對輸出的影響至少要一個參閱周期。攪擾呈現后的一個參閱周期內,體系對攪擾并不發生任何調理作用,這一個周期體系近乎處于開環操控狀態。因而,重復操控體系的動態呼應速度是十分慢的。
因為上述原因,關于高需求的光伏體系逆變器不宜獨自選用重復操控[4][5]。選用數字PID操控盡管輸出電壓波形質量不是很高,但它卻是以開關周期對盯梢差錯進行調理。細心規劃體系參數,能夠使體系取得杰出的動態特性。綜合思考,將兩種操控辦法聯系在一起,揚長避短,使用重復操控改進體系的穩態輸出波形質量,使用數字PID操控或極點裝備提高體系的動態特性,使體系兼具杰出的穩態和動態特性。
4 試驗成果
針對以上的剖析,在一15kW光伏體系單相全橋逆變器進步行了試驗,參數如下:開關器材選用IGBT模塊,濾波電感Lf=0.68mH,濾波電容Cf=50μF,數字信號處理器選用TI公司的TMS320F240DSP,并選用240DSP自帶雙10位A/D變換器。試驗成果如圖5所示。
(a) 閉環空載波形
(b) 閉環加載波形(R=5Ω)
圖5 試驗波形
從圖5中能夠看出,選用離散重復操控能夠確保光伏逆變器在空載條件下堅持安穩,在帶載條件下能夠顯著改進體系的穩態功能,顯著降低體系的穩態差錯。
5 結語
這篇文章剖析了光伏發電體系逆變器數字化完成的含義,并對整個體系及其操控電路進行了剖析,在操控算法上,選用離散重復操控戰略,使體系在周期性擾動信號下的穩態功能得以改進。因為數字化操控的優越性對比顯著,因而在偏遠地區及其它使用場合,數字化光伏發電體系逆變器的使用將會越來越廣泛。
以上由開關電源公司提供!
【上一個】 開關電源應用之一種電除塵器用智能高壓逆變直流電源的研制 | 【下一個】 開關電源應用之光伏系統用中小功率逆變電源的現狀與展望 |
^ 開關電源應用之數字化光伏發電逆變器的設計 |